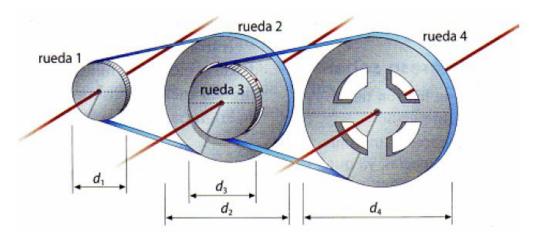
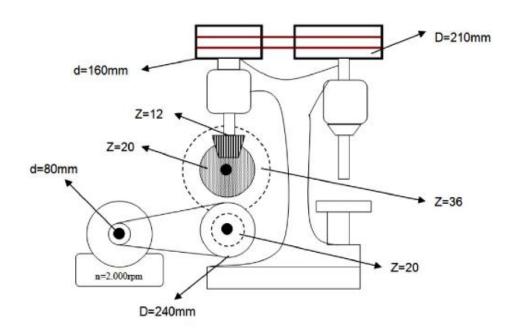
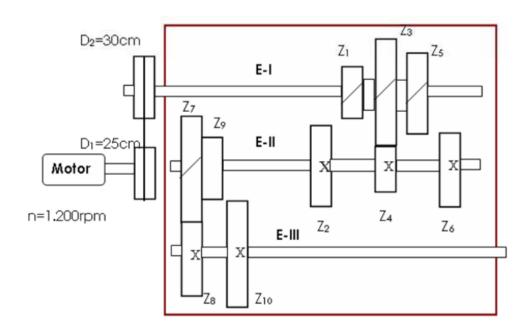

CADENAS CINEMÁTICAS

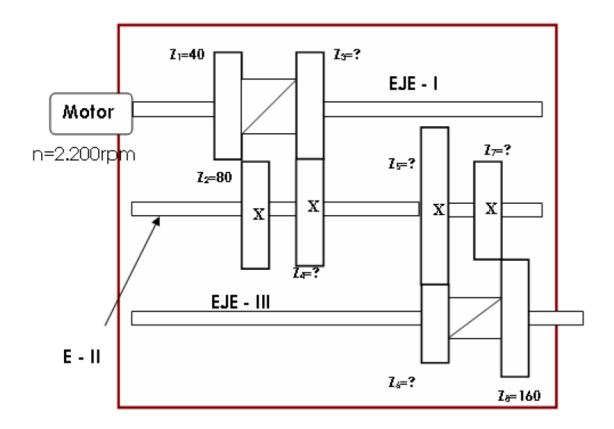

EJERCICIO 1. En el sistema de engranajes de la figura se sabe que el motor gira a 60 rpm, calcula la velocidad del eje de salida así como la relación de transmisión total.


EJERCICIO 2. En el siguiente tren de engranajes compuesto calcula el número de dientes que debe tener el engranaje 3 si el motor gira a 14400 rpm y el eje de salida a 150 rpm, ¿Cuál es la velocidad de giro de los otros ejes?

EJERCICIO 3. Dado el siguiente tren de poleas, y sabiendo que $d_1 = 20$ mm, $d_2 = 40$ mm, $d_3 = 25$ mm, $d_4 = 50$ mm y la velocidad de la rueda 1 es $n_1 = 200$ rpm; calcula las velocidades de las ruedas 2, 3 y 4.


EJERCICIO 4. Calcula la velocidad del portabrocas del taladro según el esquema de transmisión de la figura.

EJERCICIO 5. Calcular la velocidad máxima y mínima que podrá desarrollar la caja de velocidades en el eje de salida E-III de la figura, si cada engranaje tiene el siguiente nº de dientes. ¿Calcula el par motor en ambos casos si su potencia es de 100 CV


Z1=20, Z2=30, Z3=35, Z4=20, Z5=30, Z6=26, Z7=35, Z8=25, Z9=20, Z10=32 Velocidad en rpm del motor n=1.200 rpm

(SOL: n_{max}=2.450rpm, n_{min}=417,29 rpm)

EJERCICIO 6. Suponiendo que en árbol I de la figura adjunta se conecte a un motor que gira a 2.200 rpm, calcula las velocidades con que girará el tercer árbol dependiendo de las distintas combinaciones de engranajes de dientes rectos. Los datos son: $Dp_4=120$ mm, módulo m=6, $i_{||-|||}=1/4$ (cuando Z_7 engrana con Z_8) y $Dp_6=300$ mm. La distancia entre árboles es siempre es la misma, por tanto la suma de los Dp de los engranajes que engranan en dos árboles es la misma.

SOL: 275 rpm, 2750 rpm, 3300 rpm, 33000 rpm

