#### **ELEMENTOS TRANSFORMADORES DEL MOVIMIENTO**

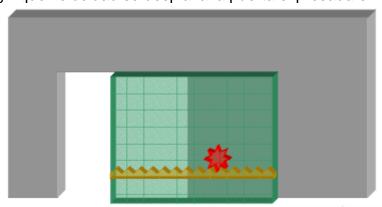
### 1- MECANISMO PIÑÓN-CREMALLERA

**Ejercicio 1**. Dado un sistema piñón cremallera con un paso de 3 mm y un piñón de 20 dientes que gira a una velocidad de 30 rpm. Calcula la velocidad de desplazamiento de la cremallera en mm / min. **Sol 1800 mm/min** 



**Ejercicio 2.** Determina el desplazamiento de una cremallera que engrana con un piñón de 20 dientes y módulo 1,25 mm cuando éste da dos vueltas completas.

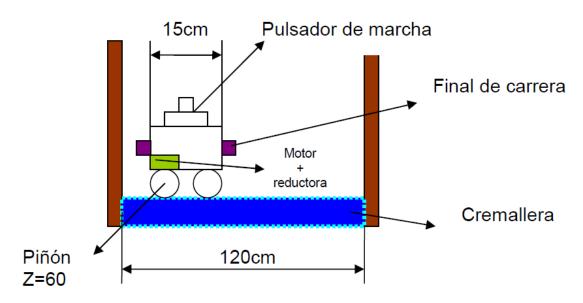
## Sol 157,07 mm


**Ejercicio 3**. Calcula el paso de una cremallera que debe engranar con un piñón de 36 dientes y diámetro primitivo 54 mm. **Sol 4,71 mm** 

**Ejercicio 4**. Averiguar el desplazamiento de una cremallera de módulo 1,5 mm por cada vuelta que da el piñón que engrana con ella y que tiene 24 dientes. **Sol 113,09 mm** 

**Ejercicio 5.** Calcula el modulo que debe tener un piñón capaz de engranar con una cremallera cuyo paso circular es de 6,28 mm. **Sol 2 mm** 

**Ejercicio 6.** Tenemos una puerta corredera de garaje movida por un mecanismo de piñón-cremallera. El piñón tiene 10 dientes y es movido por un motor. La cremallera tiene 2 dientes por cada 5 cm. Para abrirse la puerta tiene que desplazarse 3 m. Calcula:


- ¿Cuántas vueltas debe dar el piñón para abrir la puerta?
- Si el motor gira a 24 rpm, ¿Cuánto tiempo tarda en abrirse la puerta?
- ¿A qué velocidad se desplaza la puerta expresada en m/min?



**Ejercicio 7**. Un sistema piñón-cremallera se utiliza para desplazar una carretilla entre dos puntos A y B separados una distancia de 120cm. El piñón de 60 dientes (m=1mm) gira a 30rpm. Calcular:

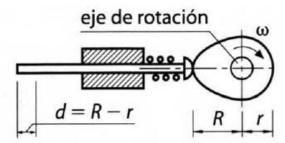
- a- La velocidad de avance de la carretilla cm/s
- b- El tiempo invertido en recorrer dicha distancia hasta que acciona el final de carrera.

(SOL: 9,42 cm/s, 11,14 s)

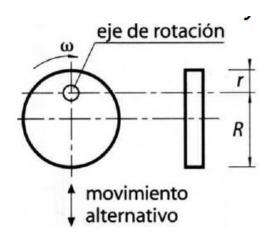


#### 2- MECANISMO TORNILLO-TUERCA

**Ejercicio 8.** Calcula cuantas vueltas hay que dar a una manivela para que el tornillo a ella acoplado avance 1,5 mm si el paso de rosca del tornillo es de 0,5 mm. **Sol 3** 


**Ejercicio 9**. El tornillo asociado a una manivela tiene un paso de rosca de 0,35 mm. Calcula el avance longitudinal cuando la manivela da cuatro vueltas completas. **Sol 1,4 mm** 

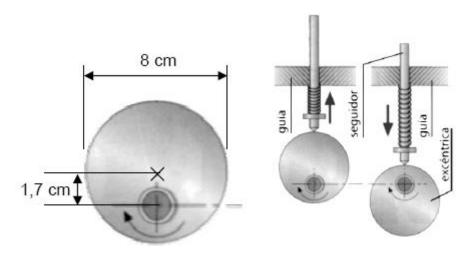
**Ejercicio 10.** Calcula la velocidad de avance de una tajadera en **mm/s** que controla la apertura y cierre de un cauce de riego, si el mecanismo de control es un sistema tornillo tuerca de triple entrada y 5 mm de paso, y la tuerca gira con una velocidad uniforme de 100 rpm. Calcula el tiempo que tarda en completarse la maniobra si la tajadera tiene una longitud de 80 cm. **Sol v = 25 mm/s, t = 32 s.** 


**Ejercicio 11.** Calcula el tiempo que tardará en desplazarse una tuerca de 2 mm de paso sobre un tornillo de dos entradas a lo largo de 16 cm, si éste gira a 240 rpm. **Sol 10 s** 

# 3- MECANISMO LEVA Y EXCÉNTRICA

**Ejercicio 12.** ¿Qué desplazamiento realizará el seguidor en un mecanismo que dispone de una leva cuyos radios son el menor de 15 mm y el mayor de 3 cm?



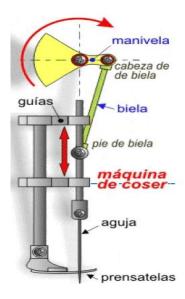

**Ejercicio 13.** ¿Qué radio mayor debe tener una excéntrica, si su radio menor es de 2 cm. y el desplazamiento que realiza en el movimiento de salida es de 60 mm.?



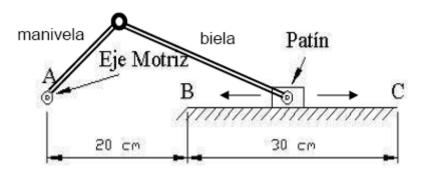
Desplazamiento = R - r = 2d

**Ejercicio 14.** En la figura se tiene un mecanismo de excéntrica seguidor. Sus medidas se indican en la figura. La excéntrica gira a 120 rpm. Se pide:

- ¿Qué valor tiene su excentricidad?
- ¿Qué valor tienen su radio menor y mayor?
- ¿Qué distancia habrá entre la posición más alta y la más baja del seguidor?
- ¿Cuántas veces sube el seguidor por segundo?




### 4- MECANISMO BIELA-MANIVELA


# Ejercicio 15.

En la imagen puede verse el mecanismo bielamanivela de una máquina de coser. A la velocidad de funcionamiento más lenta, la aguja baja 120 veces por minuto.

- a) ¿A qué velocidad gira la manivela?,
- **b)** ¿Cuánta distancia recorre la aguja si la manivela al girar describe una circunferencia de radio 1,5 cm



**Ejercicio16**. Queremos que el patín de la figura se desplace en movimiento rectilíneo alternativo entre los puntos B y C. En el punto A se dispone de un eje motriz al que conectaremos la manivela. Calcular las longitudes de la manivela y de la biela que hay que colocar

